

Recovering Energy from Waste

Exploring Trends, Challenges and Opportunities: Energy for our Future Generations

How many tonnes of municipal solid waste ("MSW") are globally produced annually?

Estimated 2,000,000,000 tons in year 2016

Projected to reach 3,400,000,000 tons in 2050 based on business as usual scenario

So what happens with this Waste?

36.7% Landfilled 33% Open dump 13.5% Recycled 11% Incinerated 5.5% Composted < 1% Others

So what happens with this Waste?

What is Residual Waste?

WASTE HIERARCHY - LANSINK'S LADDER

Waste Hierarchy - Lansink's Ladder

Source: https://en.oxforddictionaries.com/definition/waste https://en.oxforddictionaries.com/definition/residual https://www.recycling.com/downloads/waste-hierarchy-lansinks-ladder/ Oxford definition of **Waste** "Unwanted or unusable material, substances, or by-products"

Oxford definition of **Residual** "Left over or remaining after the greater part or quantity is gone"

Residual Waste are left over after reuse or recycling

When is waste a resource?

When is waste a resource?

When Waste remains as Waste

Residual Waste as Energy Resource

Resource recovery from Bottom Ash

Sources: Thermo-Recycling implenting the new recycling concept to effectively recovery metals from IBA – Morf & Böni (2018) VDI Conference MSW IBA Utilization in Finland – Rantsi (2018) VDI Conference

Part of the effort towards Circular Economy

	Landfill	Waste to Energy
Energy Production	Generally not	Yes
Land area optimization	No	Volume reduction by >90 %
Pollution	Uncontrolled	Treated and controlled
Net greenhouse gas reducer	No	Yes
Vermin	Yes	No
Odour and visual nuisance	Yes	Controlled
Reduces dependency on fossil fuels	No	Yes
Complementary with other industry	Generally not	Steam and energy delivery District cooling and heating
Material Recovery	Generally not	Material recovery system can be incorporated

Sources: www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf http://wtert.co.uk/faqs https://waste-management-world.com/a/waste-to-energy-the-carbon-perspective https://www.greenandgrowing.org/what-are-greenhouse-gases/

Indirect Greenhouse gas avoidance – Green energy from waste

- Avoid greenhouse gasses
 - Landfill: source of methane (20-30 times higher impact than CO₂)
 - Metals: Recycling metals saves around 1.5 kg CO₂ per kg iron scrap and about 10 kg CO₂ per kg aluminum.
- Waste to Energy produces CO₂
 - 30-50 % of organic source Green source

Comparing Waste to Energy with other Power Plants

	Type of energy generation				
	Fossil fuel	Waste to Energy	Solar	Wind	Nuclear
Size (MWe)	> 1000	< 100	> 100	> 100	> 1000
Efficiency of electricity generation	32-53%	19-33%	4-22%	23-45%	30-36%
Fuel Type	Oil, gas, coal	Residual waste	Renewable	Renewable	Uranium, Plutonium
EU Emission limits (mg/Nm³)					
SO ₂	400	50	n.a.	n.a.	n.a.
NO _x	300	200	n.a.	n.a.	n.a.
Dust	20	10	n.a.	n.a.	n.a.

Sources: Comparing the sustainability parameters of renewable, nuclear and fossil fuel electricity generation technologies - Evans et al. 2010 Waste-to-energy is compatible and complementary with recylcing in the circular economy – Van Caneghem et al. 2019 Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations – Amponsah et al. 2014

Comparing Waste to Energy – Green house Gas emissions

Gear Up

How do we see the energy landscape changing?

Global benchmarks - PV, wind and batteries

LCOE (\$/MWh, 2018 real)

Source: BloombergNEF. Note: The global benchmark is a country weighed-average using the latest annual capacity additions. The storage LCOE is reflective of a utility-scale Li-ion battery storage system running at a daily cycle and includes charging costs assumed to be 60% of whole sale base power price in each country.

- Prices of renewables are going down
- Economic and ecologic drivers to implement these technologies for energy production

Gear Up

How do we see the energy landscape changing?

- Increase in the use of electricity as a form of energy.
- Substantial increase in the adoption of renewable energy over the next 30 years.

	Waste Sector		Energy Sector
• • •	Success of Re-use & Recycling effort Residual Waste trends Landfill diversion rate Technology advancement for Waste to Energy	•	Reduction in green house gases Stricter emission control on power plants

Thank You