

Remarks: This material/event is funded by the Professional Services Advancement Support Scheme of the Government of the Hong Kong Special Administrative Region. Any opinions, findings, conclusions or recommendations expressed in this material/any event organised under this project do not reflect the views of the Government of the Hong Kong Special Administrative Region or the Vetting Committee of the Professional Services Advancement Support Scheme.

Session 1 Overview of Carbon Audit, Scope 1 and Scope 2

By Ir Sophia Lau Director, ASEL Consulting Company

asel.consultant@gmail.com

To manage carbon emissions, the first step you have to do, is to quantify your carbon emissions by conducting carbon audit.

So, what is Carbon Audit?

What is Carbon Audit?

- Carbon Audit or Greenhouse Gas (GHG) Accounting, is a mechanism to account and report on greenhouse gas (GHG) emissions based on common standards and protocols
- Quantifies the total greenhouse gases produced directly and indirectly from a business or organisation's activities. Also known as a carbon footprint, it is an essential tool, providing your business with a basis for understanding and managing its climate change impacts.

Support Government's Reduction Target

Functions of Carbon Audit

Functions:

- Help you to understand your emissions profile
- Help you to understand your emissions sources
- Identify key emissions sources and work out corresponding effective carbon reduction measures

Support Government's Reduction Target

Measuring your carbon footprint will also enable you to:

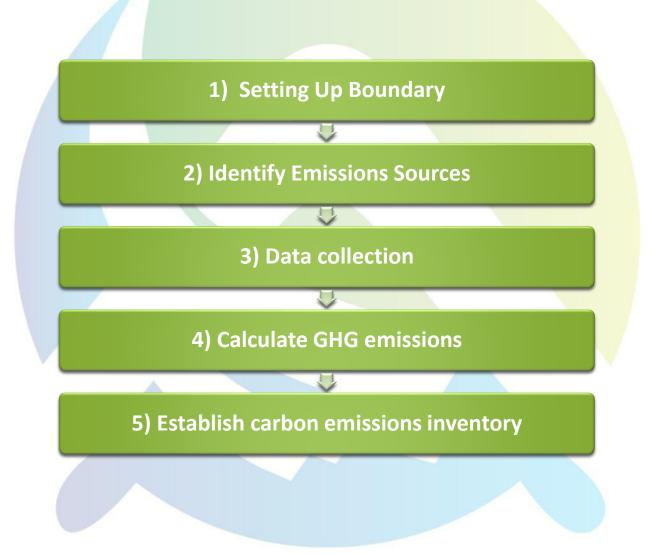
- •Prepare for future greenhouse gas legislation
- •Manage carbon risk exposure and identify areas for improvement
- Improve efficiency and cut costs through reduced energy consumption
- Gain credibility by demonstrating environmental responsibility
 Motivate and engage staff by involving them in carbon reduction plans

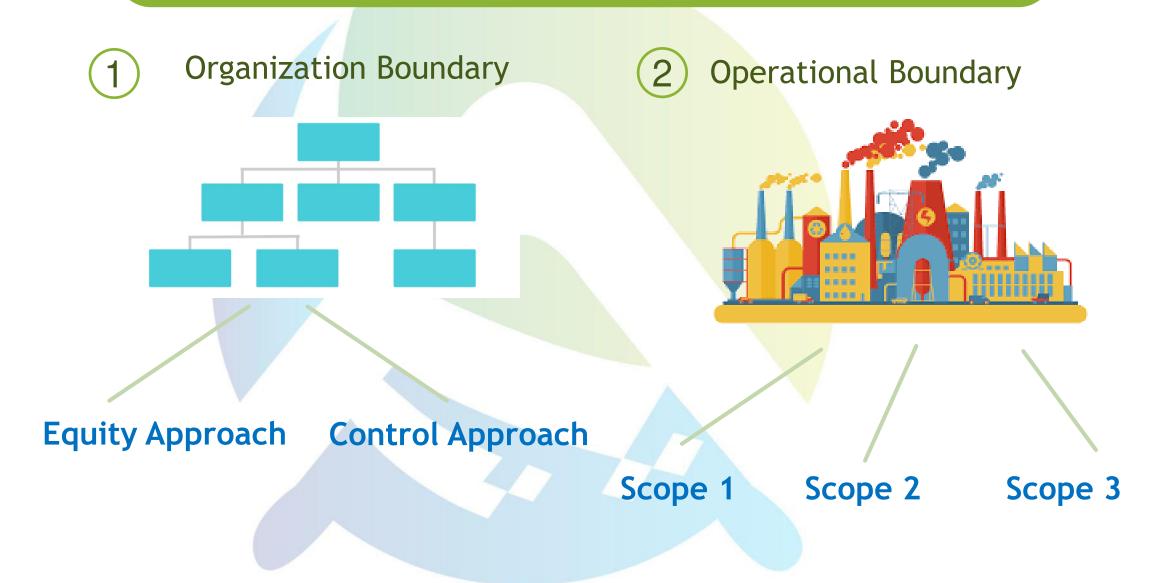
Support Government's Reduction Target

Carbon Audit Guidelines

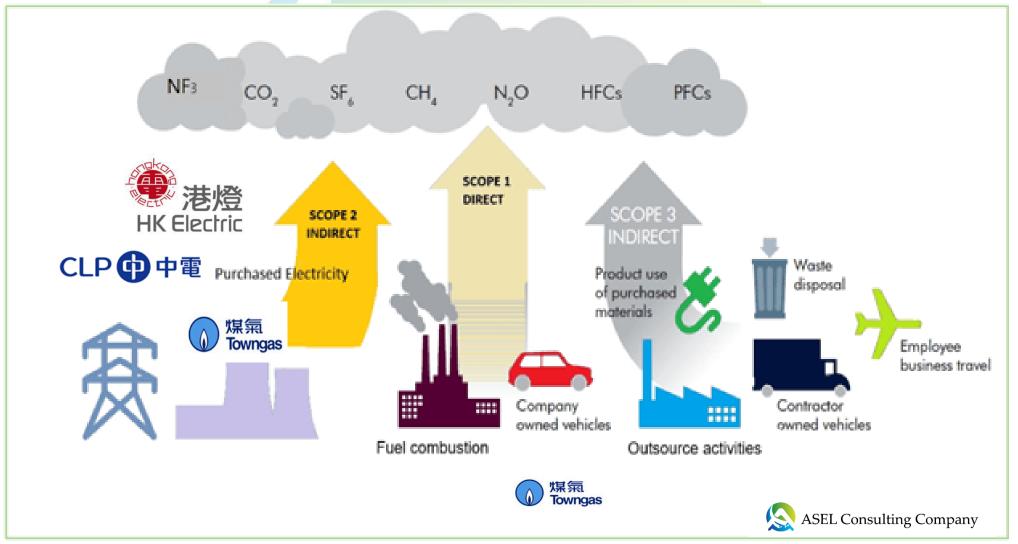
The Greenhouse Gas Protocol

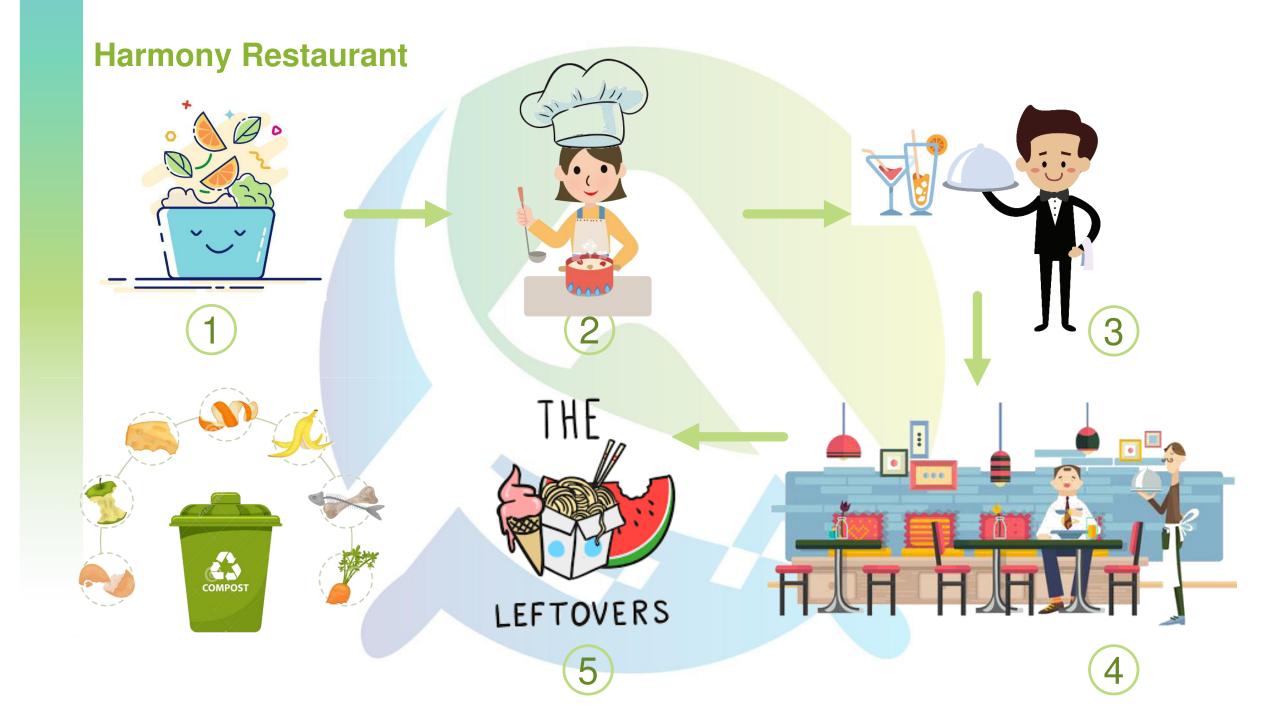
- The "Greenhouse Gas Protocol" published by World Resources Institute and World Business Council for Sustainable Development
- "Guidelines to Account for and Report on Greenhouse Gas Emissions and Removals for Buildings (Commercial, Residential or Institutional Purposes) in Hong Kong" published by EMSD and EPD in July 2008 (2nd edition Feb 2010)
- ISO 14064-1:2018 Greenhouse gases Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals



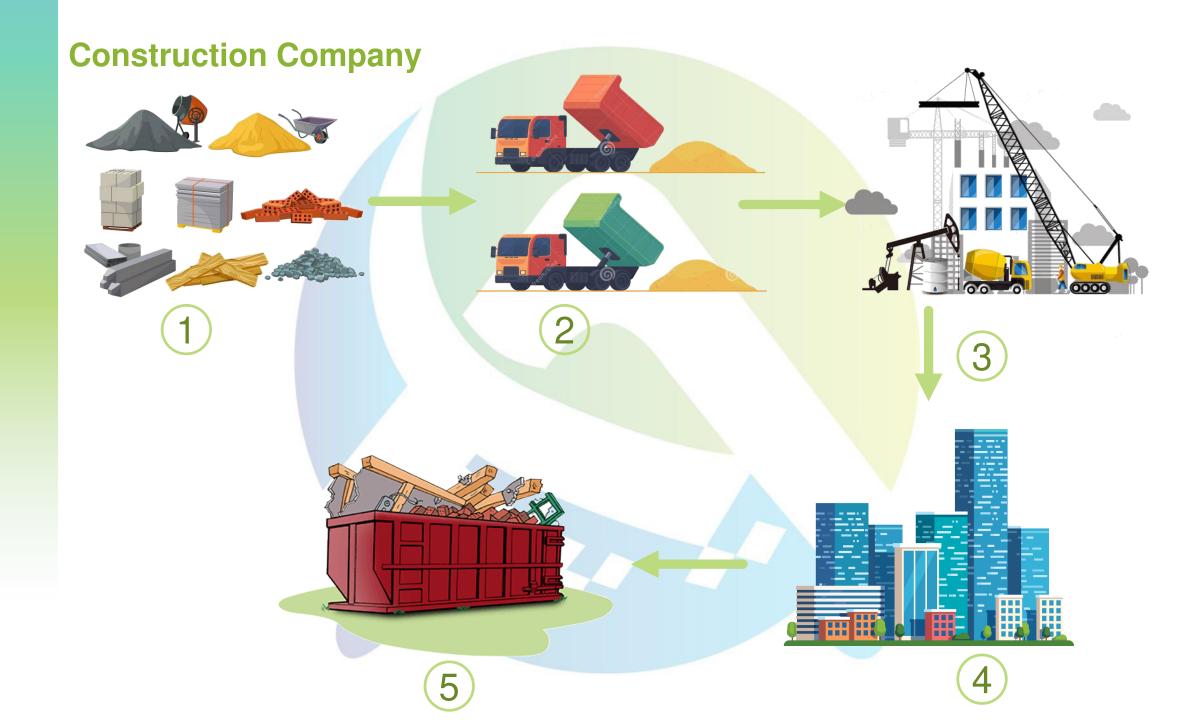


Carbon Audit Step by Step




1) Setting Up Boundaries

Step 1 - Setting up Operational Boundaries


To define which operational activities at a facility are included in the inventory.

Transport Services Company

4. Setting up Operational Boundaries

Scope 1: Direct Emissions

Stationary sources	from burning of fuels e.g. Generators, steamers Examples of fuel types: diesel, petroleum, natural gas, towngas (HK specific)
mobile sources	from vehicles, ground services equipment emissions Examples of fuel types: diesel, petroleum, jet fuel
Physical or chemical emissions	e.g. CO2 from cement manufacturing
Fugitive emissions	Leakage from the use of refrigerants, use of fire extinguishers, methane emissions from coal mines and venting etc.

4. Setting up Operational Boundaries

Scope 2: Electricity Indirect GHG Emissions

- Purchased electricity
- Use of towngas (HK specific)

4. Setting up Operational Boundaries

Scope 3 (Optional): Other Indirect GHG Emissions

Upstream	 Extraction and production of purchased materials and fuels Emissions from transport-related activities e.g. purchased materials / goods, employee business travel, employee commuting to and from work, transportation of waste Electricity consumed due to water consumption
Downstream	 Emissions from outsources activities e.g. contractors, leased assets, franchises etc. Electricity consumed due to sewage disposal Waste disposal

Step 2 Identify Removal Sources

Emissions Removal

- Each Newly Planted tree in the company's boundary will remove 23kg of CO₂ per year on site.

- trees that are capable to reach 5m in height

(Under EPD/EMSD guideline)

Step 3 – Data Collection

Table	Emission Type	Data Source
Scope 1	Fixed Source	-Fuel invoice
	- Generator etc.	-Filling record
	Mobile Source	-Fuel invoice
	-Vehicle	-Filling record
	-Ships	
	-Aircraft	
	Emissions from refrigerants leakage	- Refilling record
	Emissions Removal from Newly planted	 Property management / landscape
	trees	contractor
Scope 2	Electricity Consumption	- Electricity bills
	Towngas	- Towngas bills
Scope 3	Waste paper disposed to landfill	-purchasing record, recycling record
		-Purchasing Dept, Admin office, waste
		collector
	Fresh water consumption	- Water bills
	Sewage disposal	- Water bills

17

Step 4 - Calculate GHG Emissions

1 tonne of Carbon Dioxide is equivalent to a balloon 10 metres in Diameter!

mis is the size of ONE TOONNE CO. Base was ease too base

6. Calculate GHG Emissions

- Carbon Dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)
- Hydrofluorocarbons (HFCs)
- Perfluorocarbons (PFCs)
- Sulphur hexafluoride (SF)
- Nitrogen trifluoride (NF3)

-

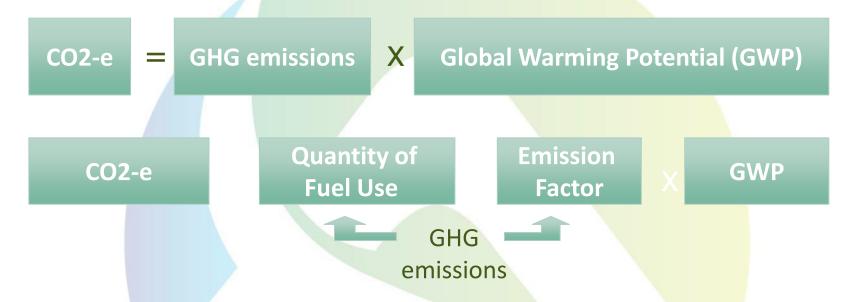
 Carbon dioxide equivalent (CO₂-e) describes how much global warming a given type and amount of greenhouse gas may cause, using the functionally equivalent amount or concentration of carbon dioxide(CO₂) as the reference.

Х

СО2-е

GHG emissions

Global Warming Potential (GWP)


"CO₂-e" (tonnes)

Global Warming Potential (GWP) (updated in 2014 IPCC AR5)

Global warming potential (GWP) is a measure of how much a given mass of greenhouse gas contributes to global warming relative to CO2.

1		GWP	
		GWF	
	Carbon Dioxide (CO2)	1	
	Methane (CH4)	<u>28</u>	example
	Nitrous oxide (N2O)	<u>265</u>	
	Hydrofluorocarbons (HFCs)	12-14,800	
	Perfluorocarbons (PFCs)	7,300-12,200	
	Sulphur hexafluoride (SF6)	22,800	
	Nitrogen trifluoride (NF3)	17,200	
Exa	mple for 1 tonne of	CH4	
28 t	onnes of CO2-e = 1	tonne of CH4 ×	28

How to calculate emissions?

- Emission factors describe how much of greenhouse gases will be emitted during the burning of a particular fuel source.
- Emission factors are preferably time- and country-specific

Emission Factors are usually publicly available.

Samples of CO₂ Emissions Factors

1. Emissions factor for vehicle fuels

FuelType	Emission factors	Unit
Diesel Oil	2.614	kg/litre
Unleaded Petrol	2.360	kg/litre
LPG	1.679	kg/litre

2. Emissions factors (EF) for Towngas (kg CO₂-e/Unit of Towngas purchased)

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
EF	0.735	0.693	0.592	0.593	0.628	0.620	0.618	0.610	0.62	0.60	0.6	0.599	0.592	0.564	0.597	0.592

3. Emission factors (EF) for electricity use in HK (in kg CO₂-e/kWh)

Power	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2017	2018	2019	2020
Company														
CLP	0.56	0.53	0.52	0.53	0.57	0.54	0.56	0.54	0.59	0.58	0.51	0.51	0.50	0.37
HEC	0.98	0.98	0.92	0.91	0.83	0.84	0.79	0.79	0.79	0.79	0.78	0.79	0.81	0.71

Source: Guidelines to Account for and Report on GHG emisions and removals for buildings in HK 2010 Edition

Samples of CO₂ Emissions Factors

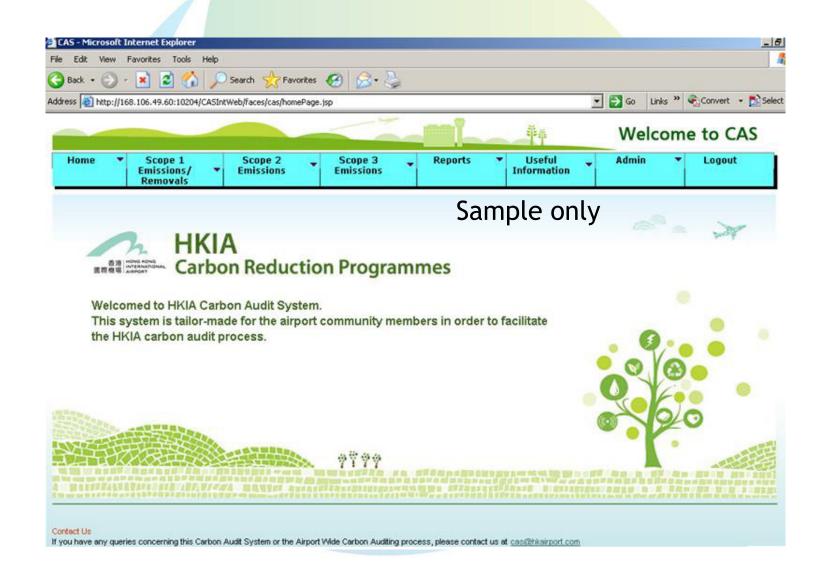
Aspects	Organization	Emission factors used	Reference	Link		
Electricity Consumption	CLP	0.5 kgCO₂/kWh	CLP Sustainability Report 2019 P.86	CLP Sustainability Report 2019 (clpgroup.com)		
Fresh Water Consumption	WSD	0.424 kgCO2e/m³	WSD Annual Report 18/19 P.61	https://www.wsd.gov.hk/fil emanager/common/annua I_report/2018_19/pdf/WS D_AR2018- 19_20200327_R1.pdf		
Sewage Disposal	DSD	0.7 x 0.28 = 0.2 kgCO2e/m ³	DSD Sustainability Report 18/19	https://www.dsd.gov.hk/D ocuments/SustainabilityR eports/1819/en/key_statist ics_and_data.html		
Fuels	Environmental Protection Department, Electrical and Mechanical Services Department	Gas Emissions and Re Residential or Institutio EPD & EMSD 2010	Account for and Report on Greenhouse Removals for Buildings (Commercial, ional Purposes) in Hong Kong. Published by ady.gov.hk/files/pdf/Guidelines_English_201			

Establish Carbon Emission Inventory

Calculation tools :

- Excel files
- Online Carbon calculator
- Off the shelf carbon calculator

"Low Carbon Living Calculator"


https://www.carboncalculator.gov.hk/en

Examples of Carbon Audit Software

1

CAS - I											
	Microsoft Internet	Explorer									_8
File Ed	it View Favorites	; Tools Help									
G Back	• 🕑 - 🔀	2 🏠 🔎	Search 🤸 Fav	orites 🧭	🗟 • 😓						
Address	http://168.106.49	9.60:10204/CASIn	tWeb/faces/cas/stati	ionaryCombus	stion.jsp			-	Go Links '	Convert	🝷 🔂 Select
					-*		ŤŦ		Welcor	ne to C	AS
Hor	Emis	ope 1 sions/ 🔹	Scope 2 Emissions		cope 3 nissions	Reports	▼ Useful Informatio		Admin	• Logou	t
Static	onary Combus	stion	San	nple	only	Company: Department:	Airport Authority Human Resource		stration Depar	tment 💌	•
								Audit Pe	riod 2010	Month	Jun 💌
Add	Edit Delete	Audit Trail						Audit Pe	riod 2010	- Month	Jun 💌
	Source Deep		E.IT.		F	uel Consumptio	n		riod 2010		
Add Select	Source Deep	ription and	Fuel Type	Unit	F Last month	uel Consumptio This month	n Total this year				
Select	Source Desc	ription and	Fuel Type Diesel Oil	Unit				En	nissions in to	nnes of CO ₂ ·	e
Select	Source Desc locat	ription and				This month	Total this year	En CO ₂	nissions in to CH ₄	nnes of CO ₂ · N ₂ O	e Total
Select ©	Source Desc locat abc	ription and	Diesel Oil	Litre		This month 123.00	Total this year 123.00	En CO ₂ 0.32	nissions in tor CH ₄ 0.00	nnes of CO ₂ · N ₂ O 0.00	e Total 0.32

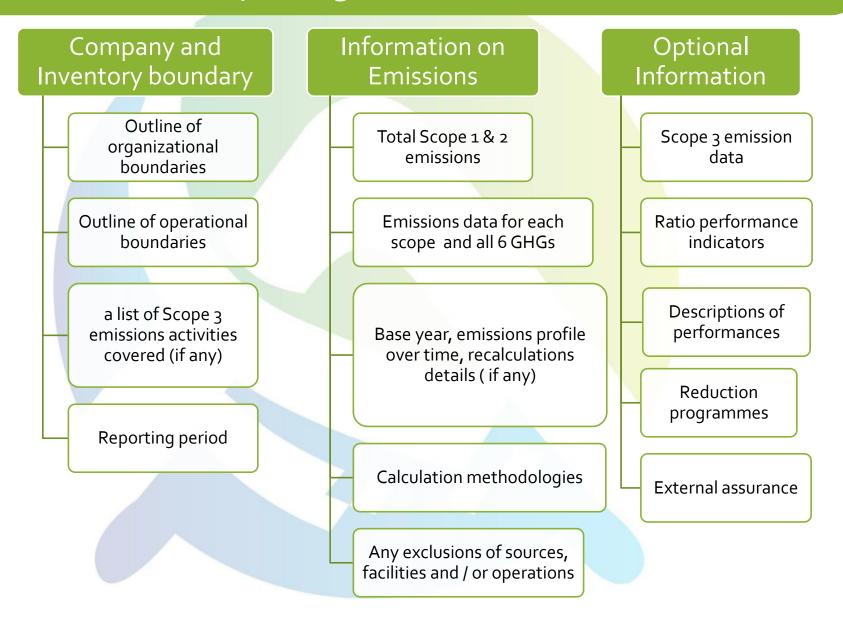
Examples of Carbon Audit Software

CARBON CALCULATOR

Carbon Footprint Calculator For Individuals And Households

This carbon calculator is provided free to use

Show you care for the environment and communities across the World by Carbon Offsetting.


You can support Carbon Offsetting Projects that both tackle climate change and support impoverished communities across the world. Just click the 'Offset' button after you have finished your calculation. It takes only a few easy clicks and costs only a few Pounds/Dollars/Euros per tonne CO₂. You also get a personalised Certificate recognising your offsetting - makes an ideal gift too!

80 8
Language: English (United States)
Why create an account?
tike 8.4K people like this. Sign Up to see what your friends like.
Welcome House Flights Car Motorbike Bus & Rail Secondary Results
Welcome to the web's leading carbon footprint calculator
First, please tell us where you live: [why?]
Country: [Hong Kong 🗸
Carbon footprint calculations are typically based on annual emissions from the previous 12 months
Enter the period this calculation covers (optional):
from monomia to monomia Save
Next, select the appropriate tab above to calculate the part of your lifestyle you are most interested in, e.g. your flights. Or, visit each of the tabs above to calculate your full carbon footprint.
Following your calculation, you can offset / neutralise your emissions through one of our climate-friendly projects.
House >

add our CO2 calculation tools to your website

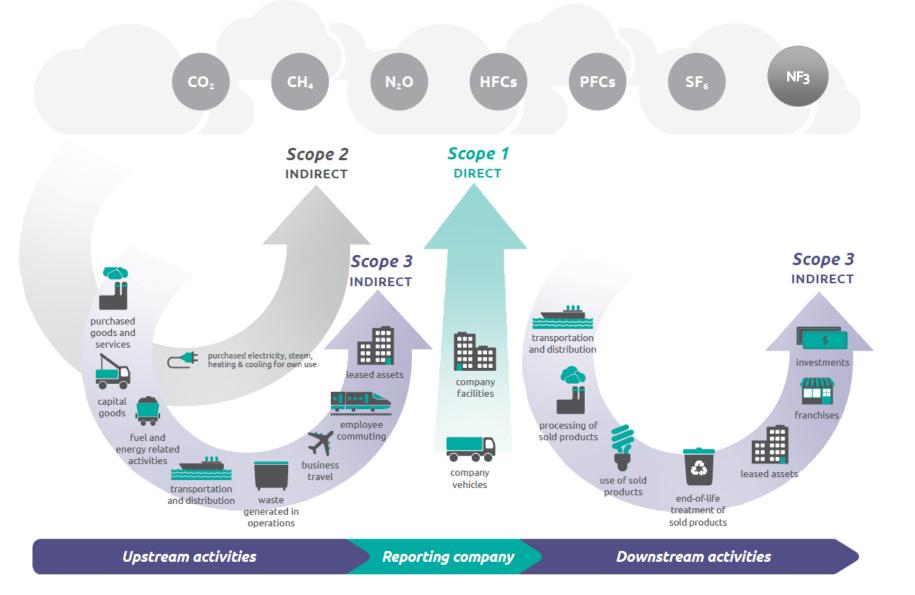
https://www.carbonfootprint.com/calculator.aspx

Reporting GHG Emissions

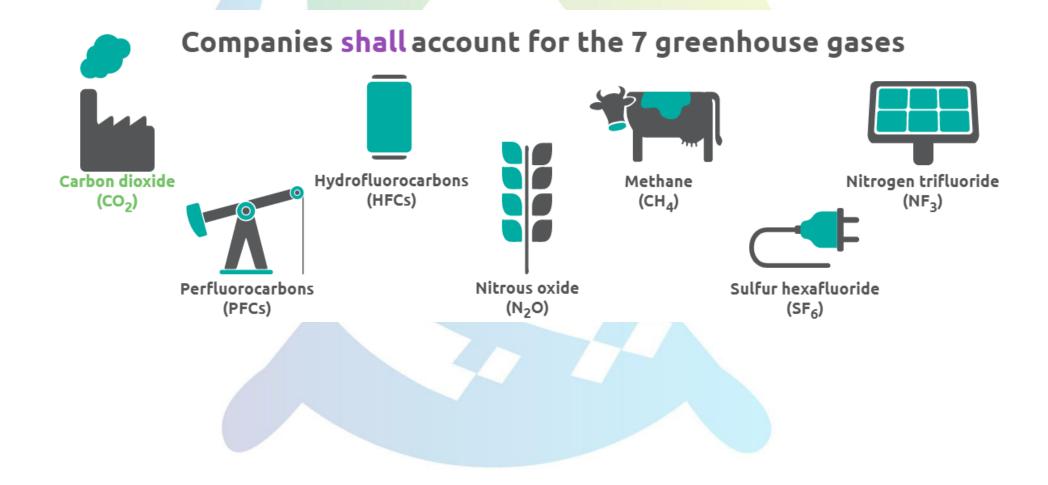
End of Session 1

Session 2 Introduction to Scope 3

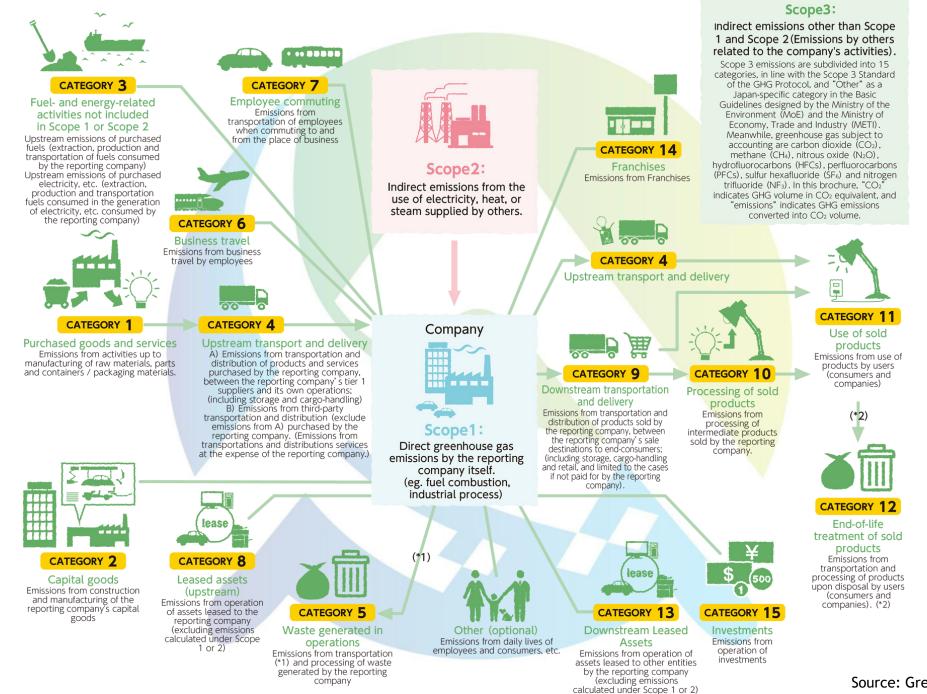
By Ir Sophia Lau Director, ASEL Consulting Company



asel.consultant@gmail.com


Diagram of scopes and emissions across the value chain

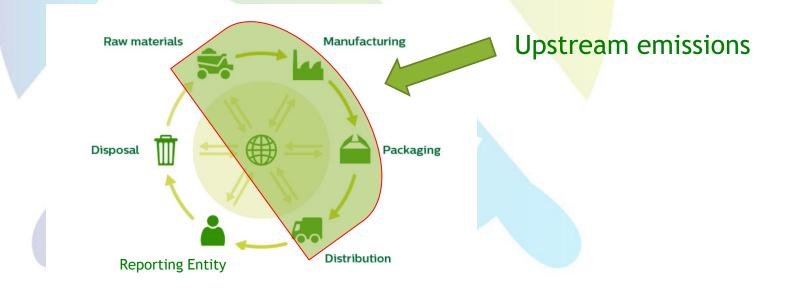
Overview of GHG Protocol scopes and emissions across the value chain


Gases to Include

Seven types of Greenhouse Gases

Scope 3 - 15 Categories

Source: Green value chain platform

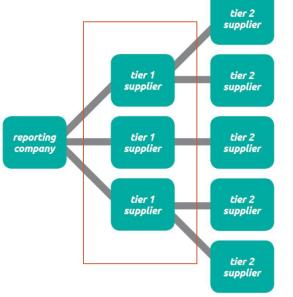


Upstream Scope 3 emissions

- Categories 1 Purchased Goods and Services
 - Extraction, production, and transportation of goods and services purchased or acquired by the reporting company in the reporting year
 - Typically account for a large percentage of all scope 3 emissions.

Categories 2 – Capital Goods

• Extraction, production, and transportation of capital goods purchased or acquired by the reporting company in the reporting year


Categories 3 – Fuel-and energy-related activities

- Extraction, production, and transportation of a) fuels and b) energy purchased or acquired by the reporting company in the reporting year
- Typically account for a large percentage of all scope 3 emissions.
- Not included in scope 1 or scope 2

- Categories 4 Upstream transportat
- Transportation and distribution of products purchased by the reporting company in the reporting year between a company's tier 1 suppliers and its own operations (in vehicles and facilities not owned or controlled by the reporting company)
- Transportation and distribution services purchased by the reporting company in the reporting year

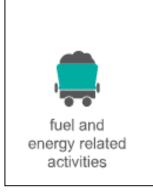
c) Also cover
transmission and
distribution loss
d) Electricity that is
sold to end users

Categories 5 – Waste generated in operations

- Disposal and treatment of waste generated in the reporting company's operations in the reporting year
- in facilities not owned or controlled by the reporting company

What are the waste treatment methods in Hong Kong?

- Categories 6 Business Travel
 - Transportation of employees for business-related activities during the reporting year
 - in vehicles not owned or operated by the reporting company



Categories 7 – Business Travel

What's the impact of COVID-19 to business travel emissions?

- Transportation of employees between their homes and their worksites during the reporting year
- in vehicles not owned or operated by the reporting company

Categories 8 – Upstream leased assets

• Operation of assets leased by the reporting company (lessee) in the reporting year and not included in scope 1 and scope 2

Downstream Scope 3 emissions

- Categories 9 Downstream transportation and distribution
- Transportation and distribution of products sold by the reporting company in the reporting year between the reporting company's operations and the end consumer (if not paid for by the reporting company), including retail and storage (in vehicles and facilities not owned or controlled by the reporting company)

Categories 10 – Processing of sold products

Processing of intermediate products sold in the reporting year by downstream companies (e.g. manufacturers).

Categories 11 – Use of sold products

use of sold products • End use of goods and services sold by the reporting company in the reporting year

Please name some examples of sold products.

end-of-life treatment of sold products Waste disposal and treatment of products sold by the reporting company (in the reporting year) at the end of their life

Categories 12 – End-of-life treatment of sold products

downstream leased assets

Categories 13 - Downstream leased assets

Operation of assets owned by the reporting company and leased to other entities in the reporting year, not included in scope 1 and scope 2

franchises

Categories 14 – Franchises

• Operation of franchises in the reporting year, not included in scope 1 and scope 2

Categories 15 – investments

- Operation of investments (including equity and debt investments and project finance) in the reporting year, not included in scope 1 or scope 2
- primarily for private financial institutions like commercial banks
- This category is applicable to investors and companies that provide financial services

List of Scope 3 Categories

Upstream or downstream

Upstream scope 3 emissions

Upstream emissions are indirect GHG emissions related to purchased or acquired goods and services.

Downstream scope 3 emissions

Downstream emissions are indirect GHG emissions related to sold goods and services.

Scope 3 category

- 1. Purchased goods and services
- 2. Capital goods
- **3.** Fuel- and energy-related activities (not included in scope 1 or scope 2)
- 4. Upstream transportation and distribution
- 5. Waste generated in operations
- 6. Business travel
- 7. Employee commuting
- 8. Upstream leased assets
- 9. Downstream transportation and distribution
- **10.** Processing of sold products
- **11.** Use of sold products
- **12.** End-of-life treatment of sold products
- **13.** Downstream leased assets
- 14. Franchises
- 15. Investments

End of Session 2

Session 3 Scope 3 Data Collection and Calculation

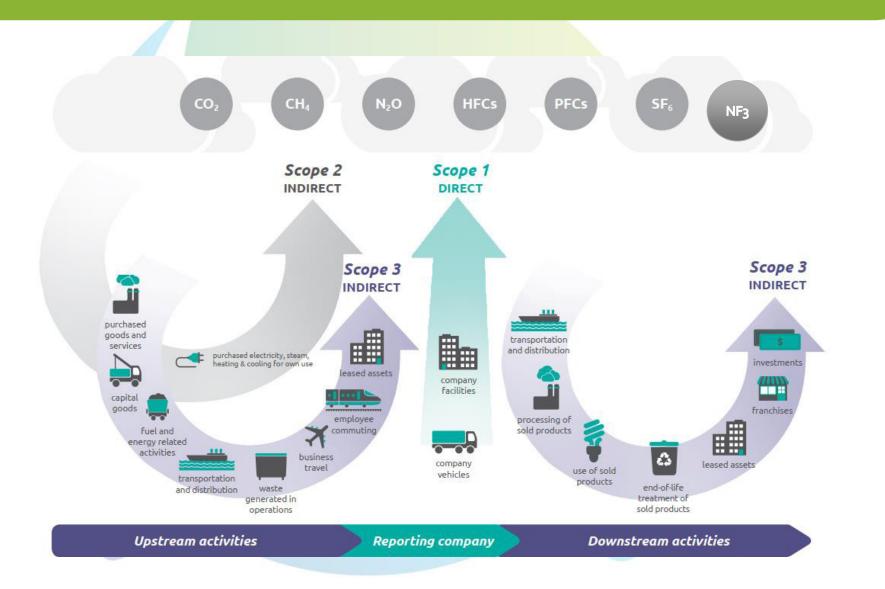
By Ir Sophia Lau Director, ASEL Consulting Company 28th January, 2022

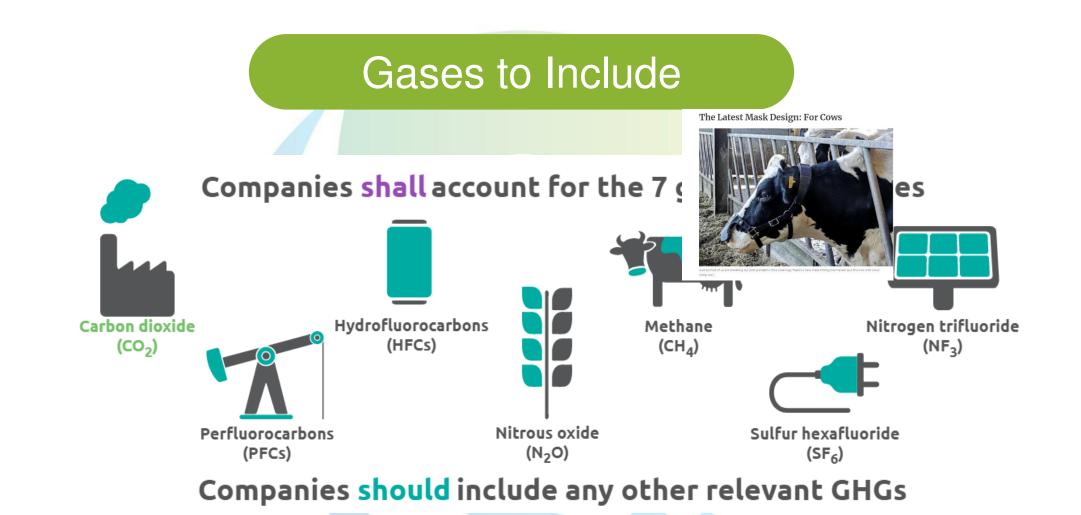
asel.consultant@gmail.com

Rundown in 25 Feb, 2022

- 09:00 09:15 Brief Recap
- 09:15 10:30 Session 3a Scope 3 Mapping and Data collection
- 10:30 10:45 Break
- 10:45 11:15 Session 4 Scope 3 Calculation and Reporting
- 11:15 12:00 Discussion and Conclusion

Why do we need to manage our value chain?





Corporate-level GHG Protocol reporting options

Reporting Option	Scope 1	Scope 2	Scope 3
Report in conformance with the GHG Protocol Corporate Standard	Required	Required	Optional: Companies may report any scope 3 emissions the company chooses
Report in conformance with the GHG Protocol Corporate Standard and the GHG Protocol Scope 3 Standard	Required	Required	Required : Companies shall report scope 3 emissions following the requirements of the <i>Scope 3 Standard</i>

Overview of GHG Protocol scopes and emissions across the value chain

Biogenic CO₂ (should be reported separately)

Scope 3 – 15 Categories

List of Scope 3 Categories

Upstream or downstream

Upstream scope 3 emissions

Upstream emissions are indirect GHG emissions related to purchased or acquired goods and services.

Downstream scope 3 emissions

Downstream emissions are indirect GHG emissions related to sold goods and services.

Scope 3 category

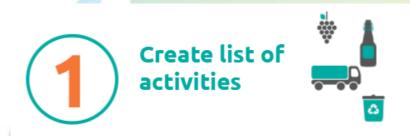
- 1. Purchased goods and services
- 2. Capital goods
- **3.** Fuel- and energy-related activities (not included in scope 1 or scope 2)
- 4. Upstream transportation and distribution
- 5. Waste generated in operations
- 6. Business travel
- 7. Employee commuting
- 8. Upstream leased assets
- 9. Downstream transportation and distribution
- **10.** Processing of sold products
- **11.** Use of sold products
- **12.** End-of-life treatment of sold products
- **13.** Downstream leased assets
- **14.** Franchises
- 15. Investments

What's next?

1. Identifying Scope 3 Activities

2. Setting up Scope 3 boundary

• Conduct screening by estimation / calculation


3. Collect Data

- Data collection prioritization
- Data selection

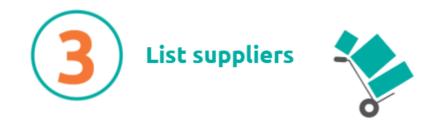
4. Detail Calculation

Reporting

1. Identifying Scope 3 Activities (value chain mapping)

Growing and processing fruit

Transforming fruit into food and beverages products


Distributing products to consumers

Use and disposal by consumers

Name

Type or Sector

Spend Category

Perceived Level of Influence

1. Identifying Scope 3 Activities (value chain mapping)

Example of a tea production company

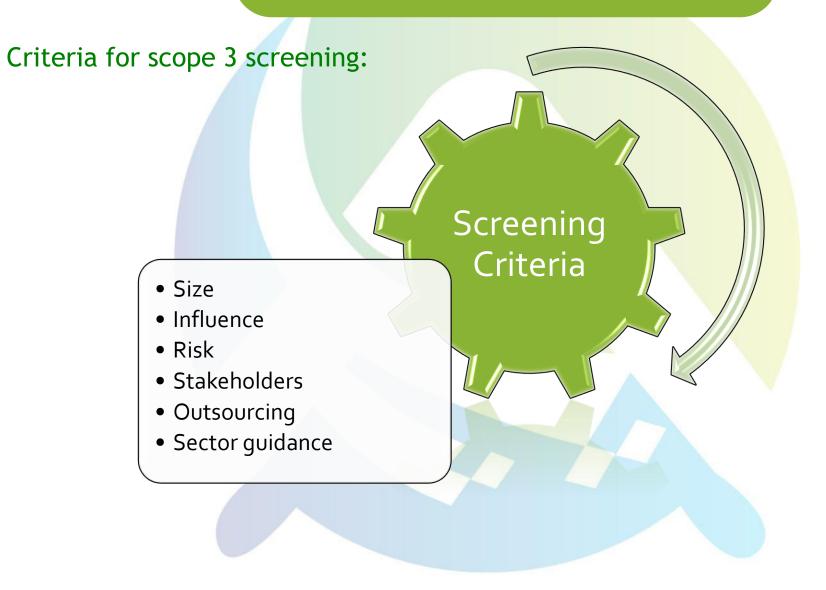
Category	Activity	Supplier/Partner
#1 Purchased Goods and Services		
	Sugar	A, B, C
	Tea	D, E, F
	Herbs	F, G
	Plastic bottle caps	Р
	Glass bottles	Р
	Tea bags	Н
	Boxes	T
	Plastic bags	J
	Office supplies, paper	К
	Office supplies, non paper	К
	Flavorings	L, M
	Lemon juice concentrate	N,O
#2 Capital Goods		
	Truck	
	Packaging Machine	
# 3 Fuel and Energy Related Activities		
	China Manufacturing Facility:	
	Electricity, China	
	D' L' LOL	

- Companies may establish their own policy for mapping the value chain, which may include creating representative, rather than exhaustive, lists of purchased products, sold products, suppliers, and other value chain partners. Other relevant value chain partners may include contract manufacturers, lessors, lessees, franchisees, customers, etc.

1. Identifying Scope 3 Activities (value chain mapping)

Tips for mapping your value chain Supply chains are dynamic - map a snapshot on specific date Create representative lists of products Use visual aids while creating your map

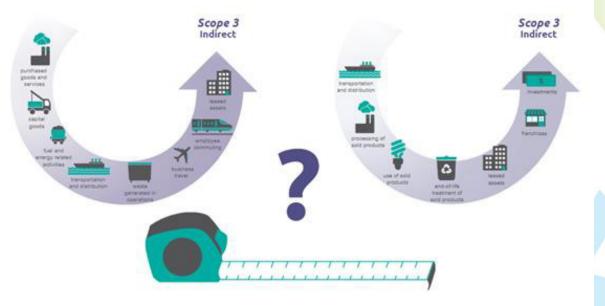
•


Companies should strive for completeness in mapping the value chain, but it is acknowledged that achieving 100% completeness may not be feasible.

2. Setting up Scope 3 boundary

Scope 3 Boundary Requirements

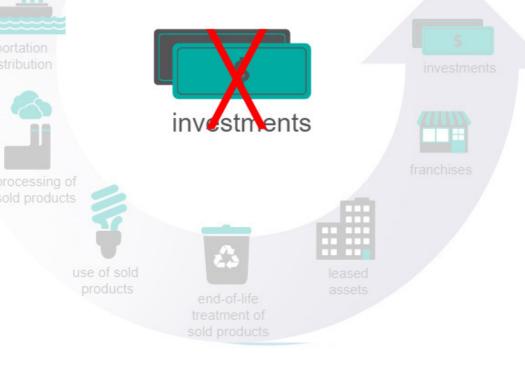
- 1. Companies shall account for <u>all scope 3 emissions</u> and <u>disclose</u> and justify exclusions.
- Companies shall account for emissions from each of the 15 scope 3 categories according to the minimum boundaries (listed in table 5.4 of the Scope 3 Standard).
- 3. Companies shall account for scope 3 emissions of <u>seven GHGs</u>: CO2, CH4, N2O, HFCs, PFCs, SF6, and NF3.
- 4. Biogenic emissions i.e. CO2 emissions from the combustion or biodegradation of biomass should be reported separately (e.g. burning of biofuels, emission of landfill gas etc.)


2. Setting up Scope 3 boundary

2. Setting up Scope 3 boundary

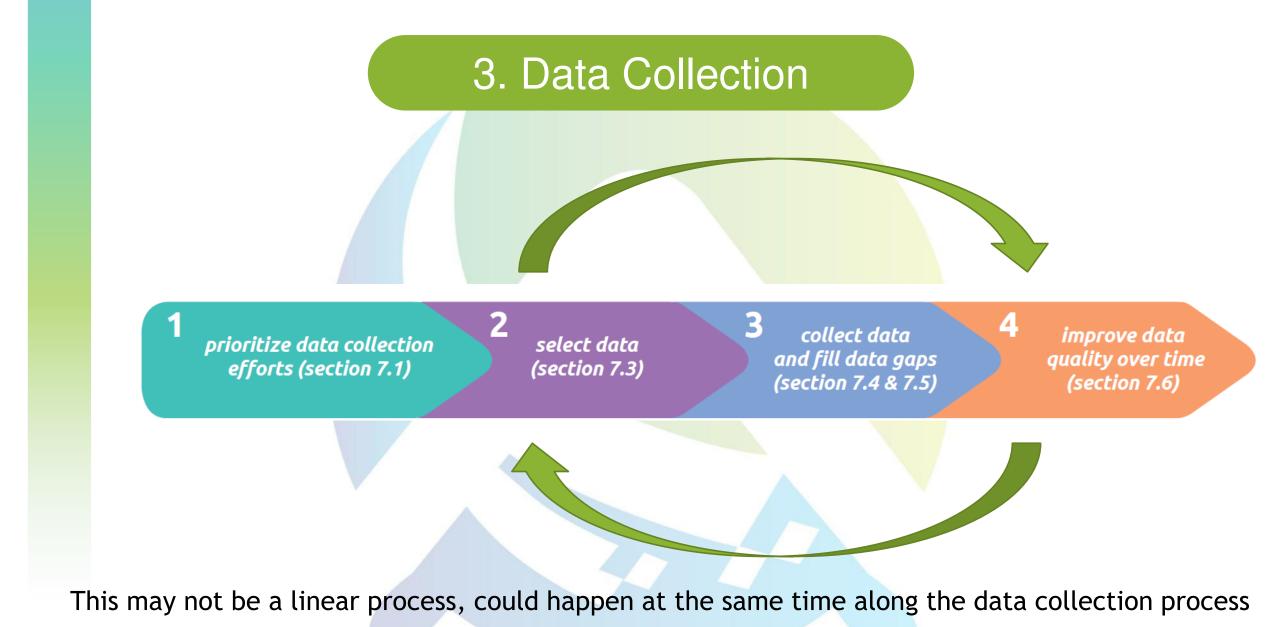
Excluding Activities

Disclose and justify all exclusions


- Some categories may not be applicable to your company.
- Some categories, based on initial estimates, may be insignificant in size and excluded, as for these activities the ability to collect data and influence GHG reductions is limited.
- Best to try to estimate before exclusion

Excluding Activities

Example


- Investments were of low relevance to stakeholders
- Negligible emissions are expected

Excluding Category 15

Category 15 Investments was excluded, with justification:

It is assumed that this category is negligible. Investments in the reporting year were predominately in software related businesses where the associated GHG emissions are relatively low. If the investments increase within HP, the team will consider looking closer at each investment for possible inclusion in the Scope 3 GHG emission calculation.

3.1. Prioritize Data Collection

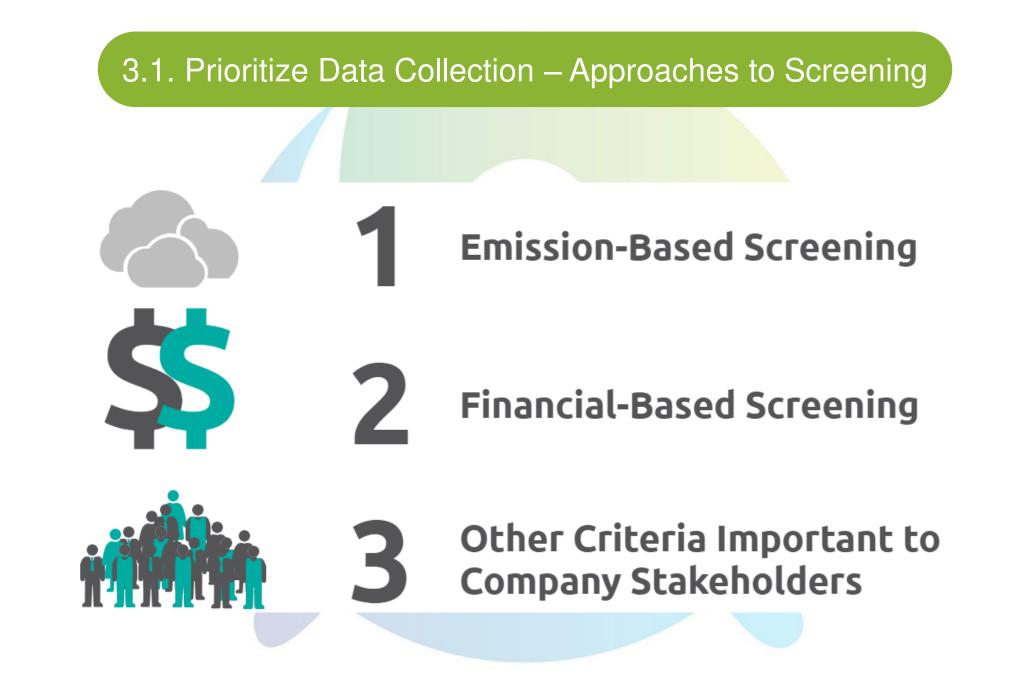
3

prioritize data collection efforts (section 7.1) select data (section 7.3) collect data and fill data gaps (section 7.4 & 7.5) improve data quality over time (section 7.6)

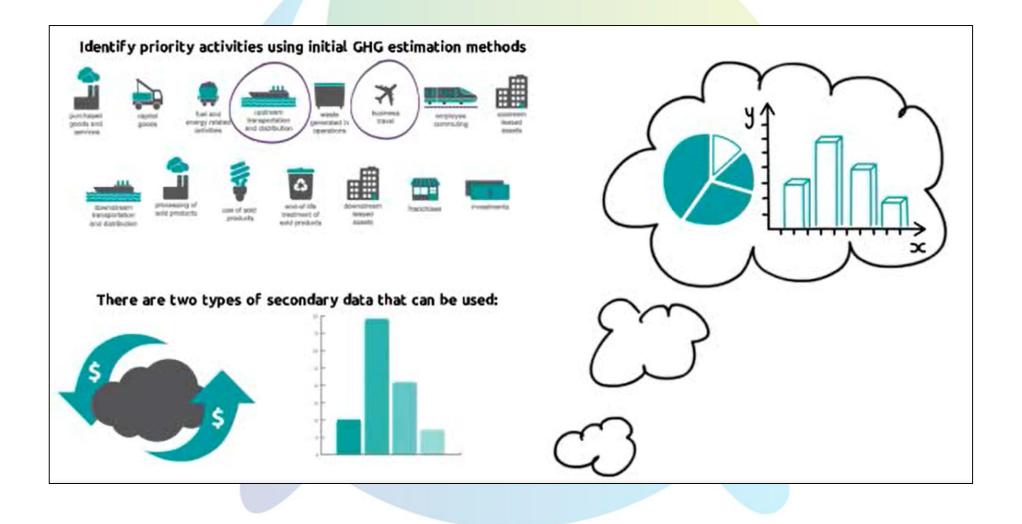
4

1 - Most significant GHG emissions produced

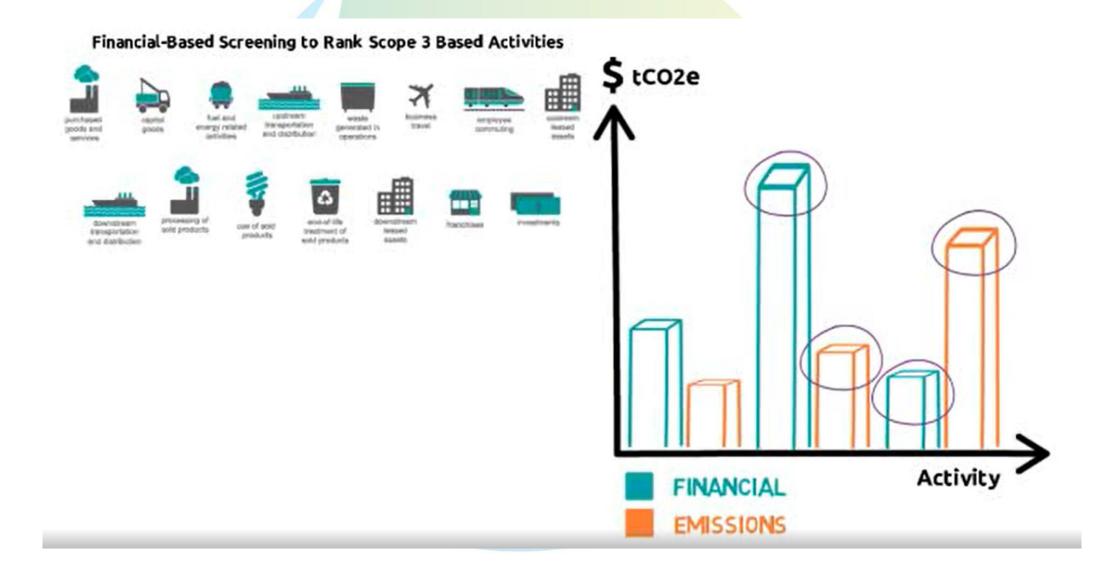
goods and services

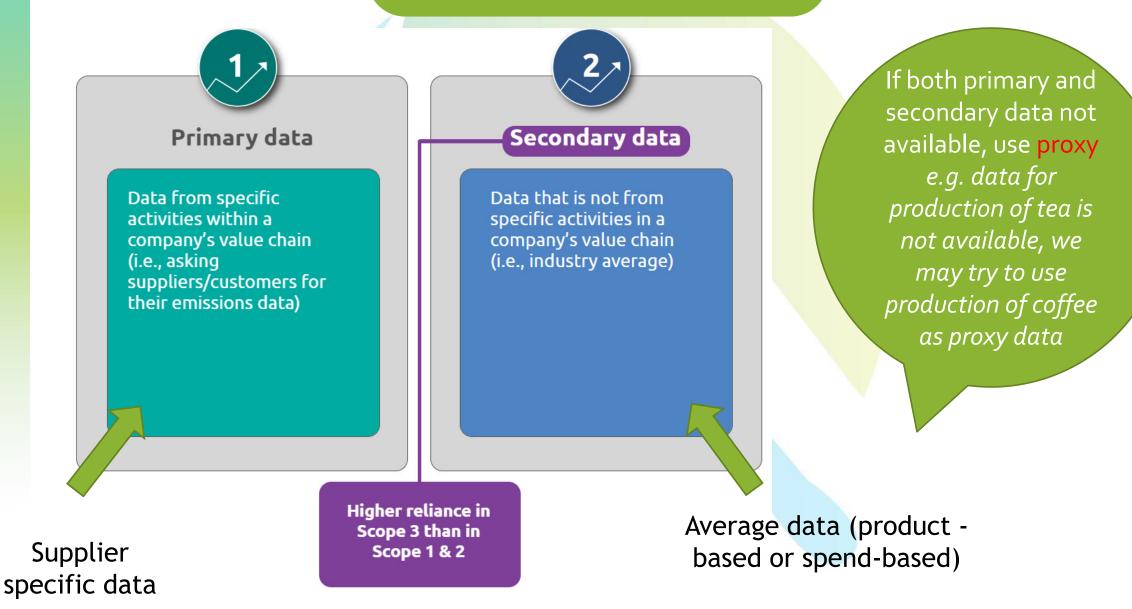

2

2 - Most significant reductions expected


3 - Most relevant to company's business goals

Will help to more effectively set reduction targets and demonstrate GHG reductions


over time.


Emission-Based Screening

Financial-Based Screening

3.2 Data Selection

GREENHOUSE GAS PROTOCOL

Common data source

THIRD PARTY DATABASES

SímaPro

These databases assist users in collecting data for product life cycle and corporate value chain (scope 3) CH(Linventories.

LCA software for informed change-makers

US EPA

3EID

Input-output (JPY) tables with environmental burden measured as energy or emissions. Includes methodology.

Athena Institute

A set of comprehensive, comparable life cycle inventory databases for building materials and products in a series of reports.

eiolca.net

Economic Input-Output Life Cycle Assessment

中国生命周期基础数据库 Chinese Life Cycle Database (CLCD)

Defra, IEA, IPCC,

Australian National Life Cycle Inventory Database (AusLCI)

The Australian National Life Cycle Inventory Database (AusLCI) is a major initiative currently being delivered by the Australian Life Cycle Assessment Society (ALCAS). The aim is to provide and maintain a national, publicly-accessible database with easy access to authoritative, comprehensive and transparent environmental information on a wide range of Australian products and services over their entire life cycle. It is an invaluable tool for those involved in environmental assessment and particularly life cycle assessment (LCA), as it provides consistent guidelines, principles and methodologies for the collection of life cycle inventory (LCI) data, along with protocols for LCA processes for different sectors.

Samples of CO₂ Emissions Factors

1. Emissions factor for vehicle fuels (HK based) Source: Guidelines to Account for and Report on GHG emissions and removals for buildings in HK 2010 Edition

Fuel Type	Emission factors	Unit
Diesel Oil	2.614	kg/litre
Unleaded Petrol	2.360	kg/litre
LPG	1.679	kg/litre

Scope	Emission source	Unit	kg CO2-e /unit	Data source
Scope 2	Electricity purchased from The Hongkong Electric Company Limited	kWh	0.80	HK Electric Investments Sustainability Report 2018
	Towngas purchased from The Hong Kong and China Gas Company Limited	unit	0.564	Towngas Sustainability Report 2018
Scope 3	Methane generation at landfill in Hong Kong due to disposal of paper waste	kg	4.8	EPD-EMSD Guidelines (2010)
	Electricity used for fresh water processing by WSD	m ³	0.404	WSD Annual Report 2017/18
	Electricity used for sewage processing by DSD	m ³	0.219	DSD Sustainability Report 2017-2018
	General waste disposal	kg	1.5	Carbon Audit Toolkit for Small and Medium Enterprises in Hong Kong

Table [7.2] Examples of activity data and emission factors

Examples of activity data

- Liters of fuel consumed
- Kilowatt-hours of electricity consumed
- Kilograms of material consumed
- Kilometers of distance traveled
- Hours of time operated
- Square meters of area occupied
- Kilograms of waste generated
- Kilograms of product sold
- Quantity of money spent

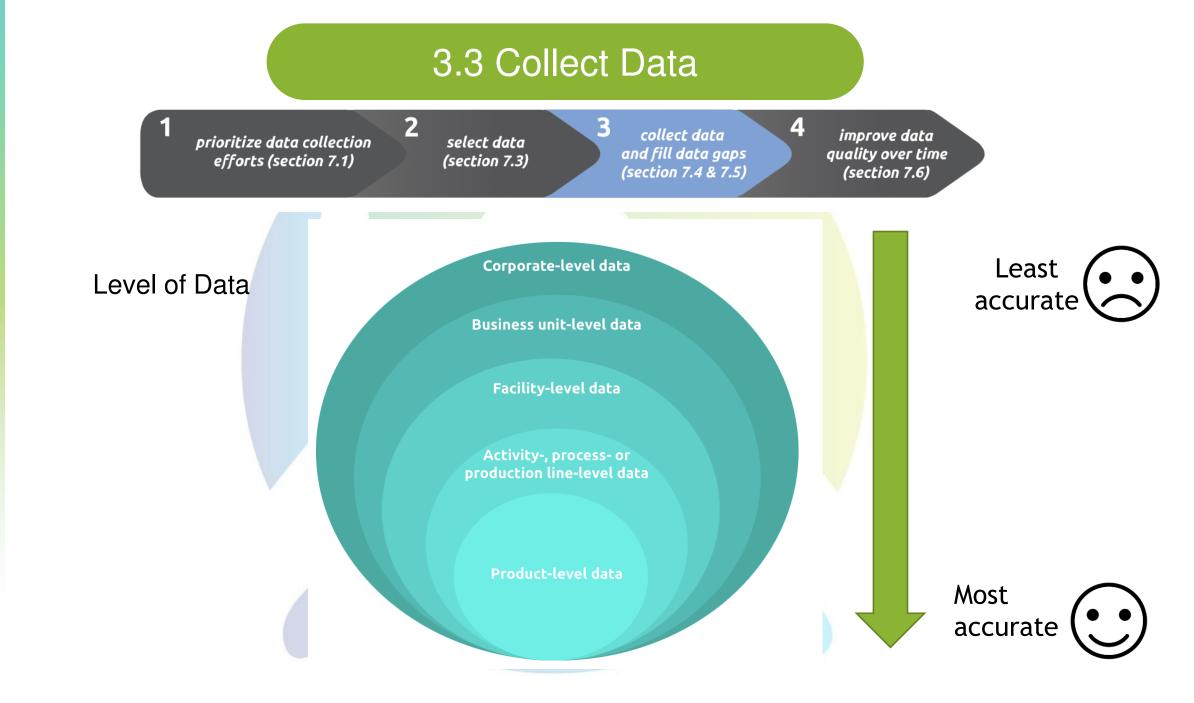
Examples of emission factors

- kg CO₂ emitted per liter of fuel consumed
- kg CO₂ emitted per kWh of electricity consumed
- kg PFC emitted per kg of material consumed
- t CO₂ emitted per kilometer traveled
- kg SF₆ emitted per hour of time operated
- g N₂O emitted per square meter of area
- g CH₄ emitted per kg of waste generated
- kg HFC emitted per kg of product sold
- kg CO₂ emitted per unit of currency spent

Criteria to determine Data Quality

Table [7.6] Data quality indicators

Indicator	Description
Technological representativeness	The degree to which the data set reflects the actual technology(ies) used
Temporal representativeness	The degree to which the data set reflects the actual time (e.g., year) or age of the activity
Geographical representativeness	The degree to which the data set reflects the actual geographic location of the activity (e.g., country or site)
Completeness	The degree to which the data is statistically representative of the relevant activity. Completeness includes the percentage of locations for which data is available and used out of the total number that relate to a specific activity. Completeness also addresses seasonal and other normal fluctuations in data.
Reliability	The degree to which the sources, data collection methods and verification procedures ² used to obtain the data are dependable.


Adapted from B.P. Weidema and M.S. Wesnaes, "Data quality management for life cycle inventories – an example of using data quality indicators," Journal of Cleaner Production 4 no. 3-4 (1996): 167-174.

Examples – in-house illustration of data uncertainty

Scope or Category	Uncertainty: Overall	Uncertainty: Activity Data	Uncertainty: Emissions Factors
1: Direct Emissions from Owned/Controlled Operations			
a. Direct Emissions from Stationary Combustion			
b. Direct Emissions from Mobile Combustion			
2: Indirect Emissions from the Use of Purchased Electricity, Steam, Heating, and Cooling			
a. Indirect Emissions from Purchased/Acquired Electricity	I		
b. Indirect Emissions from Purchased/Acquired Steam			
3: Other Indirect Emissions from Upstream and Downstream Value Chain			
a. Indirect Emissions from Purchased Products (Upstream)			
2. Purchased Goods & Services: Cradle-to-Gate Emissions			
i. Fruit Farming			
ii. Materials & Ingredients			
iii. Co-packing			
iv. Licensed Products			
v. Other Goods & Services			
Energy-Related Activities Not Included in Scope 2			
4. Capital Equipment			
5. Transportation & Distribution			
6. Business Travel			
7. Waste Generated in Operations			
9. Leased Assets			
b. Indirect Emissions from Sold Products (Downstream)			
13. Transportation & Distribution			
14. Use (Indirect Emissions from Beverage Refrigeration)			
15. Waste			1
17. Other: Processing of Sold Products			
c. Other Indirect Emissions			
16. Employee Commuting	Ţ		
Total			1

Source: https://ghgprotocol.org/

Example – Screening of Suppliers / Customers

Supplier	Raw Material	Activity Data	% total CO ₂ e
D	Теа	\$30,000,000	52.6%
E	Теа	\$15,000,000	26.3%
F	Tea & Herbs	\$6,500,000	11.4%
G	Herbs	\$1,500,000	2.6%
1	Boxes	\$1,500,000	2.6%
Ρ	Bottles & Caps	\$1,200,000	2.1%
н	Tea Bags	\$300,000	0.5%
Α	Sugar	\$300,000	0.5%
В	Sugar	\$262,500	0.5%
С	Sugar	\$187,500	0.3%
J	Plastic Bags	\$75,000	0.1%
Ν	Lemon Juice	\$36,000	0.1%
L	Flavorings	\$35,000	0.1%
К	Office Supplies	\$80,000	0.1%
М	Flavorings	\$15,000	0.0%
0	Lemon Juice	\$4,000	0.0%
		\$56,995,000	

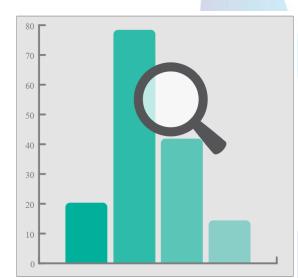
Category 10

Highest emission & spend activities	Activity data	tCO ₂ e
Customer #1 - makes liquid tea beverages	7,000,000 kg	11,340
Customer #2 - makes retail tea bag products	2,000,000 kg	1,456
Customer #3 - makes loose tea retail products	1,000,000 kg	654

Category 1

Highest emission & spend activities	Activity data	tCO ₂ e
Теа	50,000,000	23,738
Herbs	3,000,000	2,136
Boxes	1,500,000	1,217
Glass bottles	1,000,000	545
Sugar	750,000	493
Tea bags	300,000	211
Plastic bottle caps	200,000	141

3.4 Improve Data Quality


prioritize data collection efforts (section 7.1) select data (section 7.3)

2

collect data and fill data gaps (section 7.4 & 7.5)

improve data quality over time (section 7.6)

4

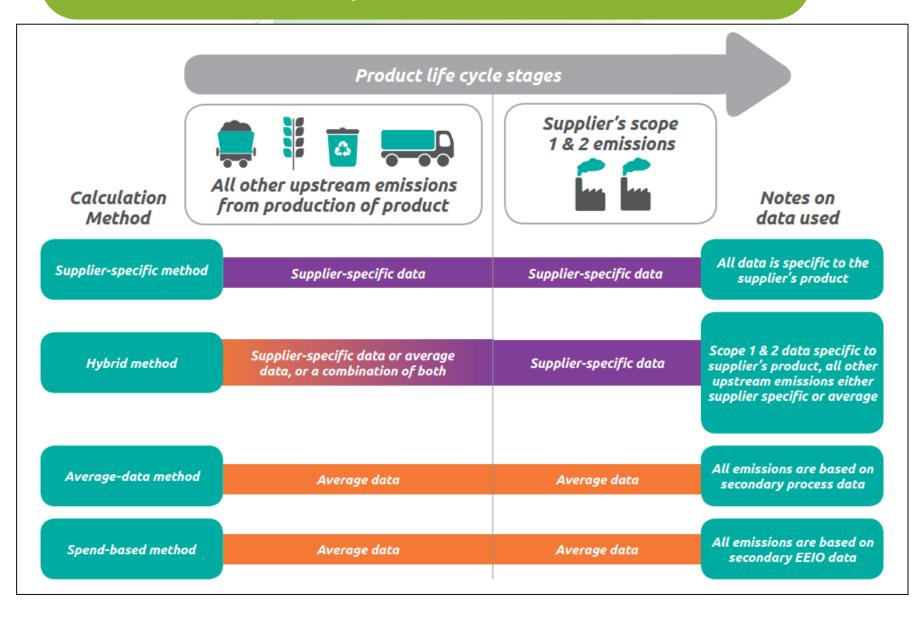
Prioritize quality improvement for activities that have:

3

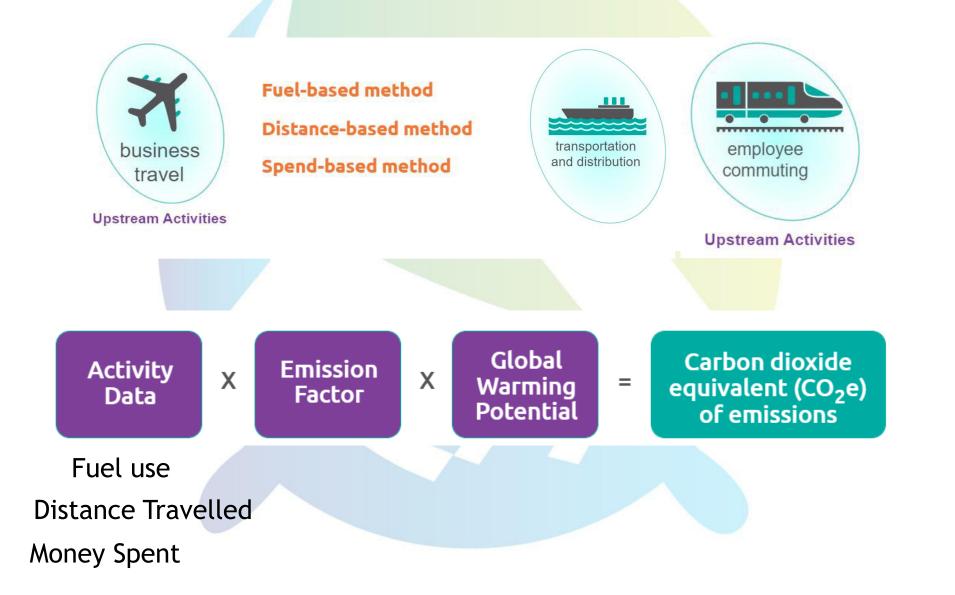
- Relatively low data quality
- Relatively high emissions

During reporting, Companies are required to provide

- a description of data sources
- data quality
- efforts to improve data quality in their inventory report.


15 mins Break

Introduction to Emissions Calculation


Emissions Calculation

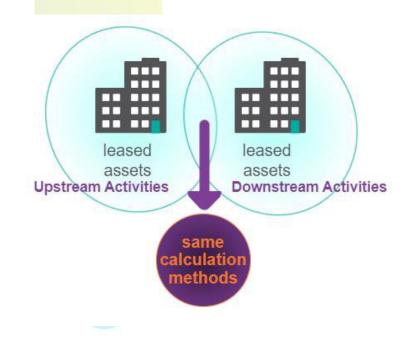
	Quantification method	Description	Relevant data types
	Direct measurement	Quantification of GHG emissions using direct monitoring, mass balance or stoichiometry GHG = Emissions Data x GWP	Direct emissions data
nost often	Calculation	Quantification of GHG emissions by multiplying activity data by an emission factor GHG = Activity Data x Emission Factor x GWP	Activity data Emission factors
used	Activity Data X	Factor X Warming = equiva	on dioxide lent (CO ₂ e) missions

Calculation Example – Products and Services

Calculation Example – Transportation

Calculation Example – Waste

Supplier-specific method


which involves collecting waste-specific scope 1 and scope 2 emissions data directly from waste treatment companies (such as for incineration, recovery for recycling).

Waste-type-specific method

which involves using emission factors for specific waste types and -waste treatment methods.

Average-data method

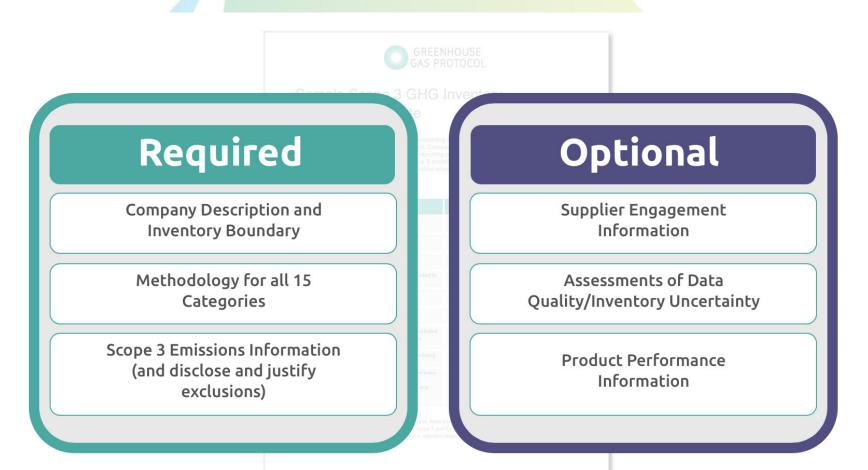
which involves estimating emissions based on total waste going to each disposal method (like landfill) and average emission factors for each disposal method.

Examples – Emission calculation using secondary data

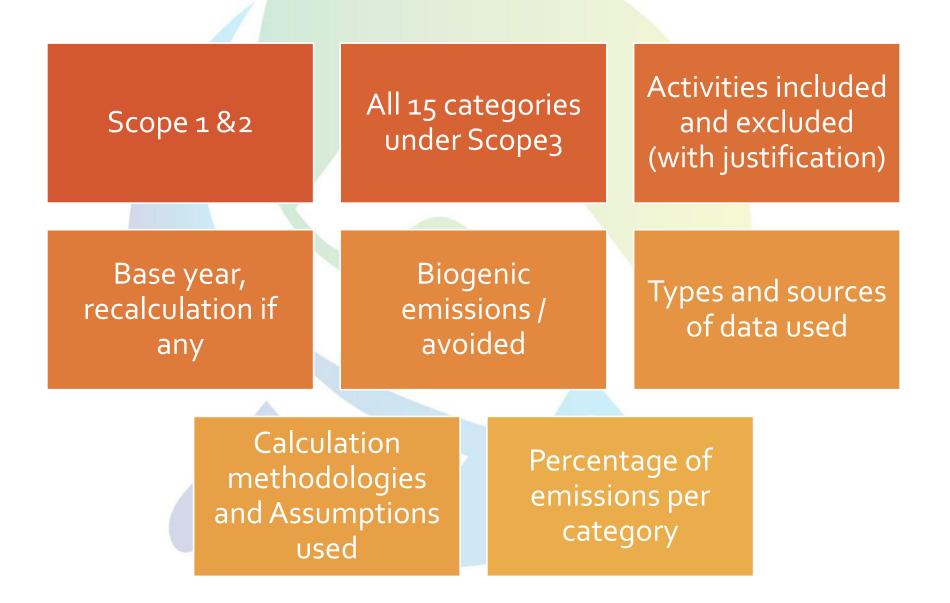
Background: Production of tea

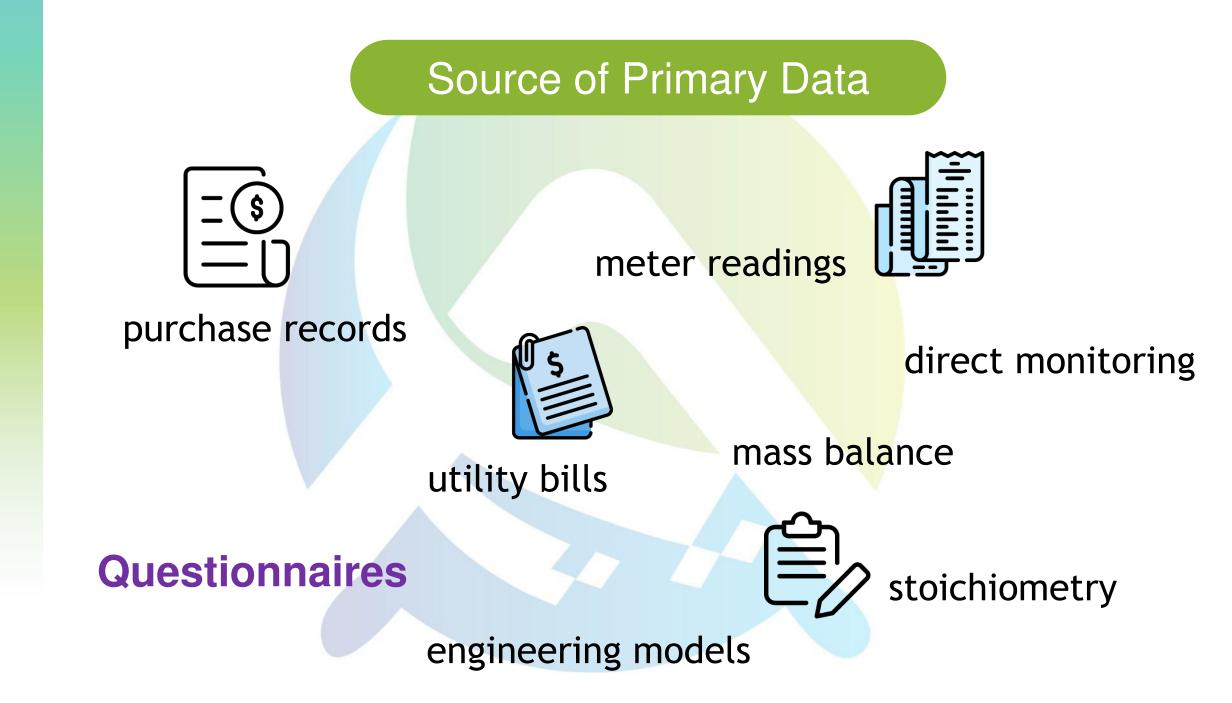
Category 1 Suppliers:	D, E, F						
Activity	Annual Activity Data	Annual Activity Source	Emission Factor	Secondary Data Source	Inflation Factor	GWP	tCO ₂ e
Tea	\$50,000,000 Supplier D - 60% Supplier E - 30% Supplier F - 10%	Terrific Tea, Purchasing	913 t CO2e/M\$	<u>eiolca.net</u> Sector: Coffee & Tea Manufacturing	0.52	1	23,738

Carnegie Mellon


eiolca.net

OG OUT	HOME >> BROW	'SE US 2002 BEN	ICHMARK MODEL


	Create Custom Model	Documentation	
Choose a model:			
Your current model is the (Show more details)	US 2002 Benchmark, which is a	Producer Price Model.	
US 2002 (428 sectors) Pro	oducer 🗸		
Select industry an	d sector:		
Search for a sector by key	word:		
Or browse for a sector bel	Search		
Select a Broad Sector C	roup	Select a Detailed Sector	
Select a Broad Sector G	roup	Select a Detailed Sector	
Select a Broad Sector G	roup	✓ Select a Detailed Sector	
	roup t of economic activity fo		
Select the amount	·	r this sector:	
Select the amount	s (whole or decimal values only)	r this sector:	
Select the amount 1 Million Dollar Select the categor	t of economic activity for rs (whole or decimal values only) (g	r this sector:	
Select the amount	s (whole or decimal values only)	r this sector:	
Select the amount 1 Million Dollar Select the categor	t of economic activity for rs (whole or decimal values only) (g	r this sector:	
Select the amount 1 Million Dollar Select the categor Economic Activity	t of economic activity for rs (whole or decimal values only) (ry of results to display: (Show more details)	r this sector:	


Green Design

Report Information

Report Information

Discussion Time

Primary data

Advantages Primary Data

Primary Data (in comparison to secondary data):

- Provides better representation of the company's specific value chain activities.
- Enables performance tracking and benchmarking of individual value chain partners by allowing companies to track operational changes from actions taken to reduce emissions at individual facilities/companies and to distinguish between suppliers in the same sector based on GHG performance.
- Expands GHG awareness, transparency, and management throughout the supply chain to the companies that have direct control over emissions.
- Allows companies to better track progress toward GHG reduction targets.

Disdvantages Primary Data

Primary data (in comparison to secondary data):

- May be costly.
- If supplied by value chain partners, the source and quality of the data may be difficult to determine or verify.

es

Advantag

Disadvantages

Secondary data

Advantages Secondary Data

Secondary data (in comparison to primary data):

- Allows companies to calculate emissions when primary data is unavailable or of insufficient quality.
- Can be useful for accounting for emissions from minor activities.
- Can be more cost-effective and easier to collect.
- Allows companies to more readily understand the relative magnitude of various scope 3 activities, identify hot spots, and prioritize efforts in primary data collection, supplier engagement, and GHG reduction efforts.

Disadvantages Secondary Data

Secondary data (in comparison to primary data):

- May not be representative of the company's specific activities.
- Does not reflect operational changes undertaken by value chain partners to reduce emissions.
- Could be difficult to quantify GHG reductions from actions taken by specific facilities or value chain partners.
- May limit the ability to track progress toward GHG reduction.

Challenges for collecting primary data from value chain partners

3

1 prioritize data collection efforts (section 7.1)

select data (section 7.3) collect data and fill data gaps (section 7.4 & 7.5) improve data quality over time (section 7.6)

4

Lack of supplier knowledge and experience with GHG inventories and accounting

Lack of supplier capacity and resources for tracking data

Large number of suppliers

Confidentiality concerns of suppliers

Lack of transparency in the quality of supplier data

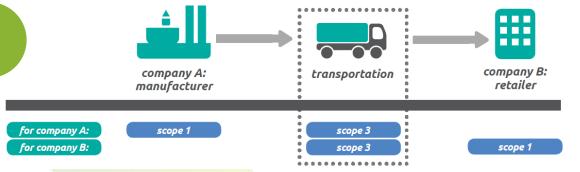
Language barriers

Ways to Engage Supply Chain

- Set up some supplier events , e.g. Supplier Day, networking does create new opportunities for both suppliers and buyers
- dedicate a day to helping your supply chain understand your vision, values and expectations
- Dedicate an area on your website for suppliers that provides key information, including how the procurement team currently engages with suppliers and the benefits of doing business with you.

Ways to Engage Supply

- Identify the right person in the value chain
- Issue survey to collect information
- Development of user-friendly platform e.g. software for data collection
- Regular communication
- Regular training
- Explain the mutual benefits e.g. company reputation


Ways to Engage and Improve performance in Supply Chain

Carrots and Sticks

- Arrangement of campaign, awards, bonus
- Penalty and punishment
- Contract requirement
- Terms and agreement e.g. green lease
- Careful selection of supplier / contractor through tender requirement e.g. score for environmental performance, provision for environmental programme
- Incentivize contractors' staff directly e.g. bonus

Double Counting in Scope 3

Companies may find double counting within scope 3 to be acceptable for purposes of:

- Reporting scope 3 emissions to stakeholders
- Driving reductions in value chain emissions
- Tracking progress toward a scope 3 reduction target
- Companies should acknowledge any double counting when making claims about scope 3 reductions to ensure transparency and avoid misinterpretation of data. For example, a company may claim that the company is working jointly with partners to reduce emissions, rather than taking exclusive credit for scope 3 reductions.

If GHG reductions have a monetary value or receive a GHG reduction program credit, companies should avoid any double counting of scope 3 reductions. To avoid double counting, companies should specify exclusive ownership of reductions through contractual agreements, when possible.

Double Counting ?

The scopes are defined to ensure that two or more companies do not account for the same emission within scope 1 or scope 2. By properly accounting for emissions as scope 1, scope 2, and scope 3, companies avoid double counting within scope 1 and scope 2.

In certain cases, two or more companies may account for the same emission within scope 3. For example, the scope 1 emissions of a power generator are the scope 2 emissions of an electrical appliance user, which are in turn the scope 3 emissions of both the appliance manufacturer and the appliance retailer. *Each of these four companies has different and often mutually exclusive opportunities to reduce emissions*.

Power company - Scope 1

Manufacturer - Scope 3 Retailer - Scope 3

User - Scope 2

Aggregation in Scope 3

Accounting for direct and indirect GHG emissions by multiple companies in a value chain facilitates the simultaneous action of multiple entities to reduce emissions throughout society.

This type of double counting means scope 3 emissions should not be aggregated across companies to determine total emissions in a given region. Note that while a single emission may be accounted for by more than one company as scope 3, in certain cases the emission is accounted for by each company in a different scope 3 category (see section 5.4 of the Scope 3 Standard). For more information on double counting within scope 3, see section 9.6 in the same Standard.